On-chip integration of high-frequency electron paramagnetic resonance spectroscopy and Hall-effect magnetometry.

نویسندگان

  • H M Quddusi
  • C M Ramsey
  • J C Gonzalez-Pons
  • J J Henderson
  • E del Barco
  • G de Loubens
  • A D Kent
چکیده

A sensor that integrates high-sensitivity micro-Hall effect magnetometry and high-frequency electron paramagnetic resonance spectroscopy capabilities on a single semiconductor chip is presented. The Hall-effect magnetometer (HEM) was fabricated from a two-dimensional electron gas GaAsAlGaAs heterostructure in the form of a cross, with a 50 x 50 microm2 sensing area. A high-frequency microstrip resonator is coupled with two small gaps to a transmission line with a 50 Omega impedance. Different resonator lengths are used to obtain quasi-TEM fundamental resonant modes in the frequency range 10-30 GHz. The resonator is positioned on top of the active area of the HEM, where the magnetic field of the fundamental mode is largest, thus optimizing the conversion of microwave power into magnetic field at the sample position. The two gaps coupling the resonator and transmission lines are engineered differently--the gap to the microwave source is designed to optimize the loaded quality factor of the resonator (Q<or=150) while the gap for the transmitted signal is larger. This latter gap minimizes losses and prevents distortion of the resonance while enabling measurement of the transmitted signal. The large filling factor of the resonator permits sensitivities comparable to that of high-quality factor resonant cavities. The integrated sensor enables measurement of the magnetization response of micron scale samples upon application of microwave fields. In particular, the combined measurement of the magnetization change and the microwave power under cw microwave irradiation of single crystal of molecular magnets is used to determine of the energy relaxation time of the molecular spin states. In addition, real-time measurements of the magnetization dynamics upon application of fast microwave pulses are demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules

Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...

متن کامل

ELECTRON PARAMAGNETIC RESONANCE (EPR) SPECTROSCOPY AND GEOCHEMISTRY IN TIN EXPLORATION AT RENISON, TASMANIA AUSTRALIA

Rock powder of dolomite samples from the Renison mine area of Tasmania, Australia were analyzed by electron paramagnentic resonance spectroscopy (EPR), Atomic Absorption and Mass Spectrometer to identify alteration related to mineralisation. The least-altered dolomite samples, which are not effected by circulation of diagenetic and hydrothermal fluids are characterised by low Mn and Fe and ...

متن کامل

A Single-Chip Electron Paramagnetic Resonance Transceiver in 0.13- m SiGe BiCMOS

We report the first absorption-based single-chip transceiver for electron paramagnetic resonance (EPR) spectroscopy in silicon. The chip is implemented in a 0.13m SiGe BiCMOS process technology. The transmitter generates and delivers a continuous-wave microwave signal with a frequency range from 895 to 979 MHz and the receiver adopts a direct-conversion architecture. Based on the single-chip tr...

متن کامل

Nondestructive Elemental Analysis of Wood Biodeterioration Using Electron Paramagnetic Resonance and Synchrotrons X-ray Fluorescence

Over the last few years we have developed nondestructive methods for the elemental analysis of wood during biodeterioration by fungi. In this paper we review progress made in our laboratories on the multi-element analysis of wood using electron paramagnetic resonance spectroscopy and synchrotron-generated X-ray spectroscopy. The non-intrusive sample preparation and the nondestructive methods ha...

متن کامل

Dynamic Nuclear Polarization of Biological Systems at High Magnetic Fields

Dynamic nuclear polarization methods were studied at high magnetic field strength and were applied to improve the sensitivity of the nuclear magnetic resonance spectroscopy of biological solids. Studies of the dynamics of electron-nuclear polarization transfer via the solid effect and thermal mixing at 5 Tesla are described for two systems: the free radical BDPA doped into polystyrene and the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 79 7  شماره 

صفحات  -

تاریخ انتشار 2008